The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1.

نویسندگان

  • Andre Fortin
  • Jason G MacLaurin
  • Nicole Arbour
  • Sean P Cregan
  • Neena Kushwaha
  • Steven M Callaghan
  • David S Park
  • Paul R Albert
  • Ruth S Slack
چکیده

The p53 tumor suppressor gene is believed to play an important role in neuronal cell death in acute neurological disease and in neurodegeneration. The p53 signaling cascade is complex, and the mechanism by which p53 induces apoptosis is cell type-dependent. Using DNA microarray analysis, we have found a striking induction of the proapoptotic gene, SIVA. SIVA is a proapoptotic protein containing a death domain and interacts with members of the tumor necrosis factor receptor family as well as anti-apoptotic Bcl-2 family proteins. SIVA is induced following direct p53 gene delivery, treatment with a DNA-damaging agent camptothecin, and stroke injury in vivo. SIVA up-regulation is sufficient to initiate the apoptotic cascade in neurons. Through isolation and analysis of the SIVA promoter, we have identified response elements for both p53 and E2F1. Like p53, E2F1 is another tumor suppressor gene involved in the regulation of apoptosis, including neuronal injury models. We have identified E2F consensus sites in the promoter region, whereas p53 recognition sequences were found in intron1. Sequence analysis has shown that these consensus sites are also conserved between mouse and human SIVA genes. Electrophoretic mobility shift assays reveal that both transcription factors are capable of binding to putative consensus sites, and luciferase reporter assays reveal that E2F1 and p53 can activate transcription from the SIVA promoter. Here, we report that the proapoptotic gene, SIVA, which functions in a broad spectrum of cell types, is a direct transcriptional target for both tumor suppressors, p53 and E2F1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-1: Thraputic Effect of Silymarin, Celecoxib and Exogenous Testosterone on Varicocele-Induced Disorders; Possible Mechanisms

Background Varicocele (VCL) is characterized by a progressive disorder which is defined by tortuosity of the pampiniform plexus veins that exerts bilateral impacts. 50-60 percent of males with infertility problems are suffering from VCL. Considering VCL-induced massive problems in human fertilizing potential, investigating different aspects of VCL-induced derangements is gaining considerable at...

متن کامل

The p53 Target Gene SIVA Enables Non-Small Cell Lung Cancer Development.

UNLABELLED Although p53 transcriptional activation potential is critical for its ability to suppress cancer, the specific target genes involved in tumor suppression remain unclear. SIVA is a p53 target gene essential for p53-dependent apoptosis, although it can also promote proliferation through inhibition of p53 in some settings. Thus, the role of SIVA in tumorigenesis remains unclear. Here, w...

متن کامل

Novel Isatin-based activator of p53 transcriptional functions in tumor cells

Bioinorganic medicinal chemistry remains a hot field for research aimed at developing novel anti-cancer treatments. Discovery of metal complexes as potent antitumor chemotherapeutics such as cisplatin led to a significant shift of focus toward organometallic/ bioinorganic compounds containing transition metals and their chelates as novel scaffolds for drug discovery. In that way, transition met...

متن کامل

The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1.

Proper regulation of cell cycle progression is pivotal for maintaining genome stability. In a search for DNA damage-inducible, CHK1-modulated genes, we have identified BTG3 (B-cell translocation gene 3) as a direct p53 target. The p53 transcription factor binds to a consensus sequence located in intron 2 of the gene both in vitro and in vivo, and depletion of p53 by small interfering RNA (siRNA...

متن کامل

The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1.

The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 27  شماره 

صفحات  -

تاریخ انتشار 2004